

The Zener barrier is a certified intrinsically safe interface. It is used to connect a certified intrinsically safe device located in a potentially explosive atmosphere (*Hazardous* area) to a non-certified device that is in a safe area.

The Zener barrier prevents the transfer of unacceptably high energy from the safe area into the hazardous area. Zener barrier properties are defined by the intrinsic safety parameters:

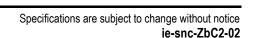
- Uo ... the highest open-circuit voltage at "HAZ" terminals
- Io ... maximum current that can be taken from the "HAZ" terminals

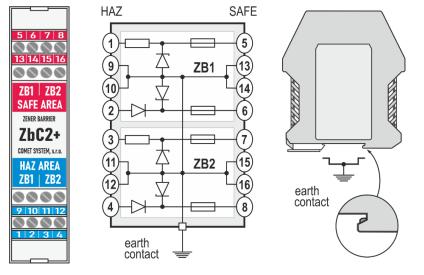
The zener diode **ZD** limits the voltage that can reach the hazardous area in the event of a fault in the safe area (the fuse **Po** protects zener diode from being destroyed by a large current). The resistor **Ro** limits the current in the event of a fault in a hazardous area (Ro = Uo / Io).

The intrinsically safe device in hazardous area and the Zener barrier in safe area have to be comply. The intrinsically safe parameters **Uo** and **Io** of the Zener barrier must be less than the values **Ui** and **Ii** of the device (Ui and Ii are the maximum voltage and current values that can be applied to the device terminals according to the certificate).

PRODUCT DESCRIPTION

The ZbC2+ Zener barrier contains two identical diode return barriers in a common housing and it is designed for DIN rail mounting in a safe area. The recommended mounting position of the barrier is shown in the figure.

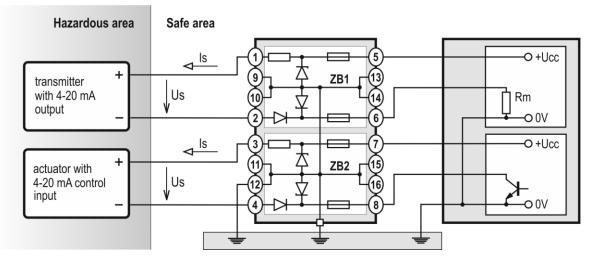

The fixed screw terminal blocks are used to connect the wires. The HAZ terminals for connecting a device located in a potentially explosive atmosphere are marked in blue. Equipment located in a safe area is connected to the SAFE terminals.


The important condition for the faultless function of the Zener barrier is **perfect earthing**. The housing includes an earth contact (see figure). It is necessary to use **additional earthing** with one or more conductors with a total cross-section of at least 4 mm² (terminals 9,10,11,12,13,14,15,16)

TECHNICAL DATA

IECHNICAL DATA		
Barrier type and design	Positive polarity with return diode Two identical Zener barrier ZB1 and ZB2 in the common housing	
Electrical specification	 Nominal resistance Ro 	310 Ω
	 Fuse rating 	40 mA
	 Series resistance 	Rs1 = max. 355 Ω (terminals 1-5, terminals 3-7)
		Rs2 = max. 42 Ω (terminals 2-6, terminals 4-8)
	Voltage drop across return diode	Ud = max. 0.8V
	 Working voltage (SAFE terminals) 	max. 26 V at current of less than 10 uA
Ambient temperature range	 -20 to +60 °C 	
Dimensions	 22,5 x 114 x 100 mm 	
Weight Data for application in connection	• 125 g	

COMET SYSTEM, s.r.o. Bezrucova 2901 756 61 Roznov pod Radhostem, Czech Republic


with hazardous areas (see the Certificate for details)

- Directive conformity
- Compliance with standards
- Certificate
- Identification marking
- Voltage Uo
- Current lo
- Resistance Ro
- Capacitance Co + Induktance Lo
- Maximum safe voltage
- Special condition for safe use (sign "X")
- DEVICE INSTALLATION

The intrinsically safe system consists of:

- intrinsically safe device located in a potentially explosive atmosphere
- measurement (control) system in a safe area.
- Zener barrier in a safe area
- connecting wires

The figure shows a typical connection a transmitter with a 4-20 mA output and an actuator with a 4-20 mA control input using the ZbC2+ Zener barrier.

The equation for current loop design:

Ucc - Ud - Us = 0.001 x ls x (Rs1 + Rs2 + Rw + Rm)

Ucc supply voltage [V], must be less than permitted *Working voltage at SAFE terminals* Ud voltage drop across return diode [V] Us terminal voltage of transmitter (servo drive) [V] Rs1, Rs2 series resistances of Zener barrier [Ω] Rw resistance of current loop wires [Ω] Rm resistance value of the loop measurement resistor [Ω] Is current [mA]

Example of current loop calculation for transmitter with 4-20 mA output (Ismax = 22 mA, Usmin = 9V, Ucc = 24V, Rm = 200 Ω).

- calculation of resistors value Rw + Rm = (1000 / Ismax) x (Ucc Usmin Ud) Rs1 Rs2 = 248 Ω
- for the measuring resistor of Rm = 200 Ω , the total resistance of the connecting wires must be less than 48 Ω

------ SAFETY INSTRUCTIONS ------

- Installation, commissioning and maintenance may only be carried out by personnel with qualification by applicable regulations and standards.
- The equipment cannot be repaired by the user, it must be replaced with an equivalent certified product.
- The equipment contains electronic components, it needs to liquidate them according to legal requirement.
- To complete the information in this data sheet use the documents available in the "Download" section at www.cometsystem.com.

2014/34/EU EN IEC 60079-0:2018, EN 60079-11:2012 FTZÚ 22 ATEX 0018X $\overleftarrow{\textbf{(x)}}$ II (3)G [Ex ic Gc] IIC 29,4 V 96mA min. 306 Ω 120nF + 2 mH or 60 nF + 4 mH 250V proper earthing according to EN 60079-11:2012